Endpoint environment variables
Through an endpoint update, you can assign values to environment variables that will be exposed to the deployment.
Endpoint.update()
provides a parameter for setting the endpoint's environment variables. It can be used alongside any update strategy.from verta.endpoint.update import DirectUpdateStrategy
endpoint.update(
model_version, DirectUpdateStrategy(),
env_vars=env_vars,
)
env_vars
takes a dictionary of string environment variable names to string values, and will be made available to the model when it is deployed.env_vars = {'LOG_LEVEL': "debug"}
Environment variables that were captured via
RegisteredModelVersion.log_environment()
will also be provided to the deployed model.model_ver.log_environment(
Python(["tensorflow"], env_vars={"CUDA_VISIBLE_DEVICES": "0,1"}),
)